Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(4): e2212338120, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36649421

RESUMO

To fertilize an oocyte, the membrane potential of both mouse and human sperm must hyperpolarize (become more negative inside). Determining the molecular mechanisms underlying this hyperpolarization is vital for developing new contraceptive methods and detecting causes of idiopathic male infertility. In mouse sperm, hyperpolarization is caused by activation of the sperm-specific potassium (K+) channel SLO3 [C. M. Santi et al., FEBS Lett. 584, 1041-1046 (2010)]. In human sperm, it has long been unclear whether hyperpolarization depends on SLO3 or the ubiquitous K+ channel SLO1 [N. Mannowetz, N. M. Naidoo, S. A. S. Choo, J. F. Smith, P. V. Lishko, Elife 2, e01009 (2013), C. Brenker et al., Elife 3, e01438 (2014), and S. A. Mansell, S. J. Publicover, C. L. R. Barratt, S. M. Wilson, Mol. Hum. Reprod. 20, 392-408 (2014)]. In this work, we identified the first selective inhibitor for human SLO3-VU0546110-and showed that it completely blocked heterologous SLO3 currents and endogenous K+ currents in human sperm. This compound also prevented sperm from hyperpolarizing and undergoing hyperactivated motility and induced acrosome reaction, which are necessary to fertilize an egg. We conclude that SLO3 is the sole K+ channel responsible for hyperpolarization and significantly contributes to the fertilizing ability of human sperm. Moreover, SLO3 is a good candidate for contraceptive development, and mutation of this gene is a possible cause of idiopathic male infertility.


Assuntos
Infertilidade Masculina , Canais de Potássio Ativados por Cálcio de Condutância Alta , Humanos , Masculino , Canais de Potássio Ativados por Cálcio de Condutância Alta/antagonistas & inibidores , Potenciais da Membrana/fisiologia , Sêmen , Espermatozoides/fisiologia
2.
iScience ; 24(11): 103210, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34746693

RESUMO

Depolarization of the myometrial smooth muscle cell (MSMC) resting membrane potential is necessary for the uterus to transition from a quiescent state to a contractile state. The molecular mechanisms involved in this transition are not completely understood. Here, we report that a coupled system between the Na+-activated K+ channel (SLO2.1) and the non-selective Na+ leak channel (NALCN) determines the MSMC membrane potential. Our data indicate that Na+ entering through NALCN acts as an intracellular signaling molecule that activates SLO2.1. Potassium efflux through SLO2.1 hyperpolarizes the membrane. A decrease in SLO2.1/NALCN activity induces membrane depolarization, triggering Ca2+ entry through voltage-dependent Ca2+ channels and promoting contraction. Consistent with functional coupling, our data show that NALCN and SLO2.1 are in close proximity in human MSMCs. We propose that these arrangements of SLO2.1 and NALCN permit these channels to functionally regulate MSMC membrane potential and cell excitability and modulate uterine contractility.

3.
Front Cell Dev Biol ; 9: 733653, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34650979

RESUMO

To fertilize an egg, mammalian sperm must undergo capacitation in the female genital tract. A key contributor to capacitation is the calcium (Ca2+) channel CatSper, which is activated by membrane depolarization and intracellular alkalinization. In mouse epididymal sperm, membrane depolarization by exposure to high KCl triggers Ca2+ entry through CatSper only in alkaline conditions (pH 8.6) or after in vitro incubation with bicarbonate (HCO3 -) and bovine serum albumin (capacitating conditions). However, in ejaculated human sperm, membrane depolarization triggers Ca2+ entry through CatSper in non-capacitating conditions and at lower pH (< pH 7.4) than is required in mouse sperm. Here, we aimed to determine the mechanism(s) by which CatSper is activated in mouse and human sperm. We exposed ejaculated mouse and human sperm to high KCl to depolarize the membrane and found that intracellular Ca2+ concentration increased at pH 7.4 in sperm from both species. Conversely, intracellular Ca2+ concentration did not increase under these conditions in mouse epididymal or human epididymal sperm. Furthermore, pre-incubation with HCO3 - triggered an intracellular Ca2+ concentration increase in response to KCl in human epididymal sperm. Treatment with protein kinase A (PKA) inhibitors during exposure to HCO3 - inhibited Ca2+ concentration increases in mouse epididymal sperm and in both mouse and human ejaculated sperm. Finally, we show that soluble adenylyl cyclase and increased intracellular pH are required for the intracellular Ca2+ concentration increase in both human and mouse sperm. In summary, our results suggest that a conserved mechanism of activation of CatSper channels is present in both human and mouse sperm. In this mechanism, HCO3 - in semen activates the soluble adenylyl cyclase/protein kinase A pathway, which leads to increased intracellular pH and sensitizes CatSper channels to respond to membrane depolarization to allow Ca2+ influx. This indirect mechanism of CatSper sensitization might be an early event capacitation that occurs as soon as the sperm contact the semen.

4.
Mol Hum Reprod ; 27(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34463764

RESUMO

Soluble adenylyl cyclase (sAC: ADCY10) has been genetically confirmed to be essential for male fertility in mice and humans. In mice, ex vivo studies of dormant, caudal epididymal sperm demonstrated that sAC is required for initiating capacitation and activating motility. We now use an improved sAC inhibitor, TDI-10229, for a comprehensive analysis of sAC function in mouse and human sperm. In contrast to caudal epididymal mouse sperm, human sperm are collected post-ejaculation, after sAC activity has already been stimulated. In addition to preventing the capacitation-induced stimulation of sAC and protein kinase A activities, tyrosine phosphorylation, alkalinization, beat frequency and acrosome reaction in dormant mouse sperm, sAC inhibitors interrupt each of these capacitation-induced changes in ejaculated human sperm. Furthermore, we show for the first time that sAC is required during acrosomal exocytosis in mouse and human sperm. These data define sAC inhibitors as candidates for non-hormonal, on-demand contraceptives suitable for delivery via intravaginal devices in women.


Assuntos
Inibidores de Adenilil Ciclases/farmacologia , Fertilização/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Adenilil Ciclases/genética , Adenilil Ciclases/fisiologia , Animais , Células Cultivadas , Feminino , Fertilização/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout , Gravidez , Espermatozoides/fisiologia
5.
Front Cell Dev Biol ; 6: 72, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30105226

RESUMO

In the early 1950s, Austin and Chang independently described the changes that are required for the sperm to fertilize oocytes in vivo. These changes were originally grouped under name of "capacitation" and were the first step in the development of in vitro fertilization (IVF) in humans. Following these initial and fundamental findings, a remarkable number of observations led to characterization of the molecular steps behind this process. The discovery of certain sperm-specific molecules and the possibility to record ion currents through patch-clamp approaches helped to integrate the initial biochemical observation with the activity of ion channels. This is of particular importance in the male gamete due to the fact that sperm are transcriptionally inactive. Therefore, sperm must control all these changes that occur during their transit through the male and female reproductive tracts by complex signaling cascades that include post-translational modifications. This review is focused on the principal molecular mechanisms that govern human sperm capacitation with particular emphasis on comparing all the reported pieces of evidence with the mouse model.

6.
J Cell Physiol ; 233(12): 9685-9700, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29953592

RESUMO

Mammalian sperm must undergo a functionally defined process called capacitation to be able to fertilize oocytes. They become capacitated in vivo by interacting with the female reproductive tract or in vitro in a defined capacitation medium that contains bovine serum albumin, calcium (Ca2+ ), and bicarbonate (HCO3- ). In this work, sperm were double stained with propidium iodide and the Ca2+ dye Fluo-4 AM and analyzed by flow cytometry to determine changes in intracellular Ca2+ concentration ([Ca2+ ]i ) in individual live sperm. An increase in [Ca2+ ]i was observed in a subpopulation of capacitated live sperm when compared with noncapacitated ones. Sperm exposed to the capacitating medium displayed a rapid increase in [Ca2+ ]i within 1 min of incubation, which remained sustained for 90 min. These rise in [Ca2+ ]i after 90 min of incubation in the capacitating medium was evidenced by an increase in the normalized median fluorescence intensity. This increase was dependent on the presence of extracellular Ca2+ and, at least in part, reflected the contribution of a new subpopulation of sperm with higher [Ca2+ ]i . In addition, it was determined that the capacitation-associated [Ca2+ ]i increase was dependent of CatSper channels, as sperm derived from CatSper knockout (CatSper KO) or incubated in the presence of CatSper inhibitors failed to increase [Ca2+ ]i . Surprisingly, a minimum increase in [Ca2+ ]i was also observed in CatSper KO sperm suggesting the existence of other Ca2+ transport systems. Altogether, these results indicate that a subpopulation of sperm increases [Ca2+ ]i very rapidly during capacitation mainly due to a CatSper-mediated influx of extracellular Ca2+ .


Assuntos
Canais de Cálcio/genética , Cálcio/farmacologia , Capacitação Espermática/genética , Espermatozoides/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Feminino , Citometria de Fluxo , Técnicas de Inativação de Genes , Genitália Feminina/metabolismo , Genitália Feminina/fisiologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Espermatozoides/crescimento & desenvolvimento
7.
J Biol Chem ; 293(25): 9924-9936, 2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29743243

RESUMO

To fertilize an egg, sperm must reside in the female reproductive tract to undergo several maturational changes that are collectively referred to as capacitation. From a molecular point of view, the HCO3--dependent activation of the atypical soluble adenylyl cyclase (ADCY10) is one of the first events that occurs during capacitation and leads to the subsequent cAMP-dependent activation of protein kinase A (PKA). Capacitation is also accompanied by hyperpolarization of the sperm plasma membrane. We previously reported that PKA activation is necessary for CFTR (cystic fibrosis transmembrane conductance regulator channel) activity and for the modulation of membrane potential (Em). However, the main HCO3- transporters involved in the initial transport and the PKA-dependent Em changes are not well known nor characterized. Here, we analyzed how the activity of CFTR regulates Em during capacitation and examined its relationship with an electrogenic Na+/HCO3- cotransporter (NBC) and epithelial Na+ channels (ENaCs). We observed that inhibition of both CFTR and NBC decreased HCO3- influx, resulting in lower PKA activity, and that events downstream of the cAMP activation of PKA are essential for the regulation of Em. Addition of a permeable cAMP analog partially rescued the inhibitory effects caused by these inhibitors. HCO3- also produced a rapid membrane hyperpolarization mediated by ENaC channels, which contribute to the regulation of Em during capacitation. Altogether, we demonstrate for the first time, that NBC cotransporters and ENaC channels are essential in the CFTR-dependent activation of the cAMP/PKA signaling pathway and Em regulation during human sperm capacitation.


Assuntos
Bicarbonatos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Canais Epiteliais de Sódio/metabolismo , Potenciais da Membrana , Capacitação Espermática , Espermatozoides/fisiologia , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Masculino , Fosforilação , Transdução de Sinais , Sódio/metabolismo , Simportadores de Sódio-Bicarbonato/metabolismo
8.
Arch Toxicol ; 92(1): 195-211, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28866748

RESUMO

Thallium (Tl) is a toxic heavy metal that causes oxidative stress both in vitro and in vivo. In this work, we evaluated the production of oxygen (ROS)- and nitrogen (RNS)-reactive species in adherent PC12 (PC12adh) cells exposed for 0.5-6 h to Tl(I) or Tl(III) (10-100 µM). In this system, Tl(I) induced mostly H2O2 generation while Tl(III) induced H2O2 and ONOO·- generation. Both cations enhanced iNOS expression and activity, and decreased CuZnSOD expression but without affecting its activity. Tl(I) increased MnSOD expression and activity but Tl(III) decreased them. NADPH oxidase (NOX) activity remained unaffected throughout the period assessed. Oxidant levels returned to baseline values after 6 h of incubation, suggesting a response of the antioxidant defense system to the oxidative insult imposed by the cations. Tl also affected the glutathione-dependent system: while Tl(III) increased glutathione peroxidase (GPx) expression and activity, Tl(I) and Tl(III) decreased glutathione reductase (GR) expression. However, GR activity was mildly enhanced by Tl(III). Finally, thioredoxin-dependent system was evaluated. Only Tl(I) increased 2-Cys peroxiredoxins (2-Cys Prx) expression, although both cations increased their activity. Tl(I) increased cytosolic thioredoxin reductase (TrxR1) and decreased mitochondrial (TrxR2) expression. Tl(III) had a biphasic effect on TrxR1 expression and slightly increased TrxR2 expression. Despite of this, both cations increased total TrxR activity. Obtained results suggest that in Tl(I)-exposed PC12adh cells, there is an early response to oxidative stress mainly by GSH-dependent system while in Tl(III)-treated cells both GSH- and Trx-dependent systems are involved.


Assuntos
Antioxidantes/metabolismo , Glutationa/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Tálio/toxicidade , Tiorredoxinas/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Enzimas/metabolismo , Inativação Metabólica/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Células PC12 , Ratos , Espécies Reativas de Oxigênio/metabolismo , Tálio/administração & dosagem , Tálio/química , Testes de Toxicidade/métodos
9.
J Cell Physiol ; 232(6): 1404-1414, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27714810

RESUMO

Mammalian sperm require to spend a limited period of time in the female reproductive tract to become competent to fertilize in a process called capacitation. It is well established that HCO3- is essential for capacitation because it activates the atypical soluble adenylate cyclase ADCY10 leading to cAMP production, and promotes alkalinization of cytoplasm, and membrane hyperpolarization. However, how HCO3- is transported into the sperm is not well understood. There is evidence that CFTR activity is involved in the human sperm capacitation but how this channel is integrated in the complex signaling cascades associated with this process remains largely unknown. In the present work, we have analyzed the extent to which CFTR regulates different events in human sperm capacitation. We observed that inhibition of CFTR affects HCO3- -entrance dependent events resulting in lower PKA activity. CFTR inhibition also affected cAMP/PKA-downstream events such as the increase in tyrosine phosphorylation, hyperactivated motility, and acrosome reaction. In addition, we demonstrated for the first time, that CFTR and PKA activity are essential for the regulation of intracellular pH, and membrane potential in human sperm. Addition of permeable cAMP partially recovered all the PKA-dependent events altered in the presence of inh-172 which is consistent with a role of CFTR upstream of PKA activation. J. Cell. Physiol. 232: 1404-1414, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Álcalis/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Potenciais da Membrana , Capacitação Espermática , Reação Acrossômica/efeitos dos fármacos , Benzoatos/metabolismo , Movimento Celular/efeitos dos fármacos , Cloretos/metabolismo , AMP Cíclico/agonistas , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Humanos , Concentração de Íons de Hidrogênio , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Isoquinolinas/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Capacitação Espermática/efeitos dos fármacos , Sulfonamidas/farmacologia , Tiazolidinas/metabolismo
10.
Dev Biol ; 411(2): 172-182, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26872876

RESUMO

Recent evidence demonstrated that most fertilizing mouse sperm undergo acrosomal exocytosis (AE) before binding to the zona pellucida of the eggs. However, the sites where fertilizing sperm could initiate AE and what stimuli trigger it remain unknown. Therefore, the aim of this study was to determine physiological sites of AE by using double transgenic mouse sperm, which carried EGFP in the acrosome and DsRed2 fluorescence in mitochondria. Using live imaging of sperm during in vitro fertilization of cumulus-oocyte complexes, it was observed that most sperm did not undergo AE. Thus, the occurrence of AE within the female reproductive tract was evaluated in the physiological context where this process occurs. Most sperm in the lower segments of the oviduct were acrosome-intact; however, a significant number of sperm that reached the upper isthmus had undergone AE. In the ampulla, only 5% of the sperm were acrosome-intact. These results support our previous observations that most of mouse sperm do not initiate AE close to or on the ZP, and further demonstrate that a significant proportion of sperm initiate AE in the upper segments of the oviductal isthmus.


Assuntos
Reação Acrossômica , Células do Cúmulo/citologia , Exocitose , Oviductos/fisiologia , Espermatozoides/fisiologia , Acrossomo/metabolismo , Animais , Feminino , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oócitos/citologia , Capacitação Espermática/fisiologia , Interações Espermatozoide-Óvulo , Zona Pelúcida/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...